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Exact discrete breather compactons in nonlinear Klein-Gordon lattices
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We demonstrate the existence of exact discrete compact breather solutions in nonlinear Klein-Gordon sys-
tems, and complete the work of Tchofo Dinda and Remoissenet@Phys. Rev. E60, 6218~1999!#, by showing
that the breathers stability is related principally to the lattice boundary conditions, the coupling term, and the
harmonicity parameter.
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I. INTRODUCTION

Many physical phenomena involve some localization
energy in space. The formation of vortices in hydrodyna
ics, self-focusing in optics or plasmas, the formation of d
locations in solids under stress, and self-trapping of energ
proteins are some examples of many branches of scienc@1#
where stable structures called solitons emerge. This typ
wave with exceptional properties however presents so
wings or tails at infinity. Indeed, in nonlinear optical fiber
the long-distance interaction between two entities leads
strict debit limitation@2#. But recently, the concept of com
pactification or strict localization of solitary waves appear
in literature@3,4#. Indeed, Rosenau and Hyman@4# showed
that solitary-wave solutions may be compactified under
influence on nonlinear dispersion which is capable of ca
ing deep qualitative changes in nature of nonlinear phen
ena. Such robust solitonlike solutions, characterized by
absence of an infinite tail or wing and whose width is velo
ity independent, have been called compactons@4#. The inter-
action properties of two compact entities or compactons m
be compared to that of two hard spheres, i.e., without lo
distance interaction. Dusuelet al. @5# have demonstrated th
existence of static compacton in a real physical system, m
up of identical pendulums connected by springs. The e
tence of compactlike kinks in nonlinear Klein-Grodon la
tices with f4 on-site substrate potential, requiring the pre
ence of nonlinear dispersion and absence of linear disper
has been shown by Tchofo Dindaet al. @6#. Moreover, exact
compactlike kink and pulse solutions of such systems h
been also demonstrated@7#. Thus, an understanding of phys
cal mechanisms which give rise to compactons is esse
for predicting the conditions in which real physical syste
can support such compact structures. Recently, some stu
predicted the existence of breather compactons@3,8#. Indeed,
Kivshar @8# showed that breathers with compact support m
exist in a lattice of identical particles interacting via a pure
anharmonic coupling, without any on-site substrate poten
This work has been completed by Tchofo Dinda and Rem
senet@9#, by adding a softf4 on-site substrate potentia
Tchofo Dinda and Remoissenet have also shown that an
act breather compacton solution exits in the continuous lim
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and a certain degree of harmonicity in the substrate poten
is required to stabilize the breather compacton soluti
These very important results raise a fundamental questio

Do exact discrete compactlike breather solutions exis
such lattices, i.e., a very stable solution with a long-tim
coherent duration, and a weak spatial extent? The purpos
the present paper is to demonstrate by using a pseudoinv
procedure @7,10–12# that, exact discrete compactlik
breather solutions exist, in a softf4 substrate potential, and
that the breather stability is related to the boundary con
tions of the lattice.

The paper is organized as follow. First, we present
lattice model and show analytically that it can admit exa
compactlike breather solutions if thef4 potential is ad-
equately chosen. Then, in Sec. III, we study numerically
stability of such compactlike breathers with fixed and fr
boundary conditions. Finally, Sec. IV is devoted to conclu
ing remarks.

II. MODEL AND EQUATION OF MOTION

We consider a lattice model where a system of atoms w
unit mass, coupled anharmonically to their nearest neighb
and interact with a nonlinear substrate potentialV(un). The
Hamiltonian of the system is given by

H5(
n

1

2
u̇n

21
1

4
Knl~un2un21!41V~un!, ~1!

whereun is the scalar dimensionless displacement of thenth
particle, andKnl is a parameter controlling the strength of th
nonlinear coupling.V(un) is an on-site substrate potenti
that we will determine by using a pseudoinverse proced
@7,10–12#, to obtain breathers compacton of the desir
shape. It is also important to note that no linear coupl
term is present in Eq.~1!. Indeed, the presence of such a te
gives rise to a phonon band which may enter directly
resonance with the internal modes of a compacton, leadin
energy radiation from the compacton.

The equation of motion of thenth atom of the lattice is
then given by

ün5Knl@~un112un!32~un2un21!3#1F~un!, ~2!
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 067601
whereF(un)52dV(un)/dun , is the substrate force derivin
from the substrate potentialV(un).

Assuming that the compactlike or breather compacton
lution of Eq. ~2! writes under the form

un5A0f~n!u~ t !, ~3!

with a spatial cosine shape, that is:

fn5cos~s!, if sP@2p/2,1p/2#,

fn50, if sP] 2`,2p/2@ , ~4!

fn50, if sP] 1p/2,1`@ ,

with s5jn, and wherej is a constant corresponding to
discrete parameter, andA0 the solution amplitude.u(t) is a
function which defines the breather behavior in time.

Now, following a pseudoinverse procedure, we first ins
Eq. ~4! in Eq. ~3! then Eq.~3! in Eq. ~2!, in order to calculate
the expression ofF(un).

Thus,

d2un

dt2
5A0fnü, ~5!

D5~un112un!32~un2un21!35A0
3u3@~fn112fn!3

2~fn2fn21!3#, ~6!

~fn112fn!35@cos~s1j!2cos~s!#3

5~coss cosj2sins sinj2coss!3, ~7!

~fn2fn21!35@cos~s!2cos~s2j!#3

5~coss2coss cosj2sins sinj!3. ~8!

Setting A52sinssinj, and B5coss(t21), with t5cosj,
the difference of the two cubic difference writes

D52A0
3u3B~B213A2!52A0

3u3@4fn
3~t21!2~t11/2!

13fn~t21!~12t2!#. ~9!

Thus, the substrate force deriving from the substrate po
tial writes

F~un!5A0fnü2Knl@8un
3~t21!2~t11/2!

26unA0
2u2~t21!2~t11!#. ~10!

One remarks that expression~10! contains yet explicitly the
function of timeu, and its second derivative.

Seeking af4 potential structure, it seems natural to e
press the differential relation inu, as a function proportiona
to un , that is

A0fnü16KnlA0
2un~t212!~t11!u252lun . ~11!

Replacing un by its expression ~3!, and setting m
56KnlA0

2(t21)2(t11), Eq. ~11! becomes
06760
o-

t

n-

ü52~lu1mu3!. ~12!

Equation ~12! has the structure of a well-known equatio
which has for a solution

u5cn~vt,k2!, ~13!

where cn is a Jacobian elliptic function of modulusk2

5m/2(l1m), and pulsationv5Al1m.
Thus, the lattice substrate force writes under the form

F~un!52
1

2
v0

2~aun1un
3!, ~14!

with v0
2516(t21)2(t11/2)Knl , anda52l/v0

2.
The solution of Eq.~2! calculated for zero initial~at time

t50) velocity on the particles is then given by

un5A0 cos@j~n2n0!#cn~vt,k2!,

if un2n0u,
p

2j
and un50, ~15!

and presents a spatial width,

Wc5p/j. ~16!

The shape of such a solution is represented by Fig. 1~at t
50 for a discrete parameterj5p/16). Solution~15! may be
compared to Eq.~5! of @9# obtained by Tchofo Dinda and
Remoissenet in the continuous limit, and explains the
markable stability of their simulations from the continuous
the discrete regime for important worths of the harmonic
parametera, since both solutions have the same structur

Note that, Eq.~2! is satisfied almost everywhere in th
lattice except at the entity feet or nodesn1 andn2 like those
represented in Fig. 1.

Indeed these two spatial singularities are at the origin
nonlinear oscillations emergence, and therefore to the

FIG. 1. Spatial sketch of the breather compacton solution at t
t50, for a discrete parameterj5p/16. The breather width is equa
to Wc516 sites.
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BRIEF REPORTS PHYSICAL REVIEW E 65 067601
struction of the breather structure, as it has been obse
numerically by Tchofo Dinda and Remoissenet@9#.

Moreover, it is clear that such a wave structure with s
tial singularities is not physically correct, except if we fi
boundary conditions with zero displacement and veloc
like for classical stationary waves on a rope fixed at its
tremities.

III. NUMERICAL SIMULATIONS:
BREATHER DYNAMICS

In the previous section, we have shown that Eq.~2! ad-
mits for solution expression~15!. Here, we verify numeri-
cally the exact character of this solution for fixed bounda
conditions, that is with zero displacement (un50) and zero
velocity (u̇n50) at the breather feet or singular points, lik
those located byn1 andn2 in Fig. 1 or crosses in Figs. 2 an
3. The lattice size is equal to 200 sites.

Figures 2 and 3 represent, respectively, the temporal e
lution of the compactlike breather profile over one period
the discrete parameters, and coupling terms,j5p/2, Knl
50.01, andj5p/16, Knl51, with an harmonicity param
eter a510. Note that, under these conditions, the breat
profile is still conserved after a large number of oscillati
periods (.100) and is accurate to the analytical predictio
located by dots in Figs. 2 and 3. A systematic investigation
the breather behavior~not presented here! reveals that the
stability of the entity is independent of the amplitudeA0,
discrete parameterj, and harmonicity parametera.

To obtain a stable breather with free boundary conditio
important values of the harmonicity parameter (a.100) are
necessary, like it has been already shown by Tchofo Di
and Remoissenet@9#. Therefore, one can deduce that t
breather stability is related to the boundary conditions.

FIG. 2. Temporal breather dynamics over one period, in
ultimate degree of discretization:j5p/2. Other parametersA0

51, Knl50.01, anda510. ~a! corresponds at timet50 and t
5T, ~b! time t5T/8 andt57T/8, ~c! time t5T/4 andt53T/4, ~d!
time t53T/8 andt55T/8, and~e! time t5T/2 with @T ~arb. units!#.
Crosses (Ã) represent the boundary conditions~zero displacemen
and zero velocity!.
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deed, our numerical simulations with free boundary con
tions ~with the same parameters as for fixed boundary c
ditions, and not represented here!, reveal a total destruction
of the initial breather structure before reaching one osci
tion period at least, and show that the instabilities start
spread out at the feet of the breather~node n1 and n2 of
sketch Fig. 1!, that is at the singular points, by the emergen
of standing phonons which interact with the core of t
breather. Indeed, when we postulate or research a solu
under the form~15!, the boundary conditions are implici
and suggest that the breather size be equal to the lattice
or vice versa.

These remarks are confirmed when important coupl
worths leading to the continuum limit reduce strongly t
singularities, like the small breather amplitudes. Note t
the big values of the harmonicity parameter which favor
oscillatory term in comparison with the coupling term, te
also to stabilize the breather structure.

IV. CONCLUSION

In summary, we have demonstrated the existence of
exact discrete compact breather solution in a standard n
linear Klein-Gordon system, and that the stability of this o
is related to the boundary conditions of the lattice. Indeed
complete the Tchofo Dinda and Remoissenet observati
and confirm the exact character of solution~15!, we achieved
any simulations with fixed boundary conditions that is w
zero displacement (un50) and zero velocity (u̇n50) at the
breather feet.

Others simulations not represented here allowed us
confirm that the solution singularities are at the origin of t
breather instabilities. These instabilities may be toned do
with a strong coupling (Knl) that is in the continuous limit,

e FIG. 3. Temporal breather dynamics over one period, in
continuous limit:j5p/16. Other parametersA051, Knl51, and
a510. ~a! corresponds at timet50 andt5T, ~b! time t5T/8 and
t57T/8, ~c! time t5T/4 and t53T/4, ~d! time t53T/8 and t
55T/8, and ~e! time t5T/2, with @T ~arb. units!#. Crosses (Ã)
represent the boundary conditions~zero displacement and zero ve
locity!.
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BRIEF REPORTS PHYSICAL REVIEW E 65 067601
or with small breather amplitude (A0) for which the singu-
larities are also reduced. Furthermore, important worths
the harmonicity parameter which favor the oscillatory te
in comparison with the coupling term, tend also to stabil
the breather structure, as it has been shown numericall
Tchofo Dinda and Remoissenet. Note that, the breathers
time without instabilities~with free boundary conditions! is
wide enough to present a genuine physical interest. Finall
emerges from this paper that exact discrete compact brea
solutions exist in nonlinear Klein-Gordon systems, and t
the concept of compactification of solitary waves impli
strict conditions that must be satisfied in order for physi
systems to support localized modes with compact supp
Some of those conditions have been explained qualitativ
in the present paper. Nevertheless, in the actual stage o
research on structures with compact support, the results
ys
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have been obtained are still far away from practical appli
tions, and much work remains to be done, in particular
the research of solutions without singularities effect, or p
ticular potentials which cancel this effect. This effort d
serves to be carried out to make the compacton conce
reality in some areas in which compactons could ens
practical applications such as in signal processing and c
munications.
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