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Exact discrete breather compactons in nonlinear Klein-Gordon lattices
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We demonstrate the existence of exact discrete compact breather solutions in nonlinear Klein-Gordon sys-
tems, and complete the work of Tchofo Dinda and Remoisdéttsts. Rev. 60, 6218(1999], by showing
that the breathers stability is related principally to the lattice boundary conditions, the coupling term, and the
harmonicity parameter.
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I. INTRODUCTION and a certain degree of harmonicity in the substrate potential
is required to stabilize the breather compacton solution.
Many physical phenomena involve some localization ofThese very important results raise a fundamental question:
energy in space. The formation of vortices in hydrodynam- Do exact discrete compactlike breather solutions exist in
ics, self-focusing in optics or plasmas, the formation of dis-such lattices, i.e., a very stable solution with a long-time
locations in solids under stress, and self-trapping of energy iGoherent duration, and a weak spatial extent? The purpose of
proteins are some examples of many branches of scldijce the present paper is to demonstrate by using a pseudoinverse
where stable structures called solitons emerge. This type dgirocedure [7,10-13 that, exact discrete compactlike
wave with exceptional properties however presents sombreather solutions exist, in a saff* substrate potential, and
wings or tails at infinity. Indeed, in nonlinear optical fibers, that the breather stability is related to the boundary condi-
the long-distance interaction between two entities leads to #ons of the lattice.
strict debit limitation[2]. But recently, the concept of com-  The paper is organized as follow. First, we present the
pactification or strict localization of solitary waves appearedattice model and show analytically that it can admit exact
in literature[3,4]. Indeed, Rosenau and Hyma#] showed compactlike breather solutions if theé* potential is ad-
that solitary-wave solutions may be compactified under thequately chosen. Then, in Sec. Ill, we study numerically the
influence on nonlinear dispersion which is capable of causstability of such compactlike breathers with fixed and free
ing deep qualitative changes in nature of nonlinear phenomboundary conditions. Finally, Sec. IV is devoted to conclud-
ena. Such robust solitonlike solutions, characterized by thiéng remarks.
absence of an infinite tail or wing and whose width is veloc-
ity independent, have been called compac{@nsThe inter-
action properties of two compact entities or compactons may
be compared to that of two hard spheres, i.e., without long- We consider a lattice model where a system of atoms with
distance interaction. Dusuet al.[5] have demonstrated the unit mass, coupled anharmonically to their nearest neighbors
existence of static compacton in a real physical system, madgnd interact with a nonlinear substrate poteniéli,). The
up of identical pendulums connected by springs. The exisHamiltonian of the system is given by
tence of compactlike kinks in nonlinear Klein-Grodon lat-
tices with ¢* on-site substrate potential, requiring the pres-
ence of nonlinear dispersion a}nd absence of linear dispersion H=>, EU% EKm(Un— Un_ )4+ V(u,), 1)
has been shown by Tchofo Ding# al. [6]. Moreover, exact 27" 4
compactlike kink and pulse solutions of such systems have
been also d_emonstrgté?l]..Thus, an understanding.of physi-. hereu, is the scalar dimensionless displacement ofrttie
cal mecha_nlsms Wh'Ch. give rise to compactons s essentl%article, andK,, is a parameter controlling the strength of the
for predicting the conditions in which real physical systems

“nonlinear couplingV(u,) is an on-site substrate potential
can support such compact structures. Recently, some studigs,. . o will determine by using a pseudoinverse procedure

predicted the existence of breather compac{8r. Indeed, 7.10-12, to obtain breathers compacton of the desired
Kivshar(8] showed that breathers with compact support may[sh,ape It’ is also important to note that no linear coupling
exist in a lattice of identical particles interacting via a purely ;.o is' present in Eq1). Indeed, the presence of such a term
anharmonic coupling, without any on-site substrate potential ' '

. X ~gives rise to a phonon band which may enter directly in
This work has be?” completeAd by T_chofo Dinda and Rer_no'sfesonance with the internal modes of a compacton, leading to
senet[9], by adding a soft$” on-site substrate potential.

. . energy radiation from the compacton.
Tchofo Dinda and Remoissenet have also shown that an ex- The equation of motion of thath atom of the lattice is

act breather compacton solution exits in the continuous I'm'tthen given by

IIl. MODEL AND EQUATION OF MOTION

*Electronic address: comte@physics.uoc.gr Up=Kny[(Ups1— U= (Uy—up_1) %]+ F(uy), (2
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whereF(u,) =—dV(u,)/du,, is the substrate force deriving
from the substrate potenti&gl(uy,).

Assuming that the compactlike or breather compacton so-

lution of Eqg. (2) writes under the form

Un=Ao¢(n) (1), ()
with a spatial cosine shape, that is:
¢n=cogs), if se[—w/2,+m/2],
¢n,=0, if se]—o,—a/2, (4)
¢n=0, if sel+m/2,40],

with s=¢n, and where¢ is a constant corresponding to a
discrete parameter, am, the solution amplituded(t) is a
function which defines the breather behavior in time.

Now, following a pseudoinverse procedure, we first insert

Eqg.(4) in Eq. (3) then Eq.(3) in Eq.(2), in order to calculate
the expression of (u,).

Thus,
d%u, .
7~ Pl (5)
A=(Uns1=Un)3= (Un=Un-1)3=A36°[(n 11— bn)°
_(¢n_¢n—l)3]v (6)
(¢ns1— ¢n)°=[cogs+¢)—cogs)]?
=(coss cosé—sinssiné—coss)®,  (7)
(¢n— dn-1)°=[cogs)—cogs—¢)]°
=(coss— coss cosé—sinssiné)®.  (8)

Setting A= —sinssin¢, and B=coss(r—1), with 7=cosé,
the difference of the two cubic difference writes

A=2A30°B(B?+3A%)=2A30[ 4¢3 (7— 1)%(7+1/2)

+3¢n(T—1)(1-7)]. 9)
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FIG. 1. Spatial sketch of the breather compacton solution at time
t=0, for a discrete parametér= 7/16. The breather width is equal
to W,=16 sites.

0=—(NO+ w6d). (12

Equation (12) has the structure of a well-known equation
which has for a solution
6=cn( wt,k?), (13

where cn is a Jacobian elliptic function of modul&$

= ul2(N+ ), and pulsationw= A + u.
Thus, the lattice substrate force writes under the form

1
F(un):—z wi(auy+ud), (14)

with w3=16(7—1)(7+1/2)K,,, anda=2\/ w?.
The solution of Eq(2) calculated for zero initia{at time
t=0) velocity on the particles is then given by

Un= Ao cog é(n—ng) Jen(wt k?),

ko

Thus, the substrate force deriving from the substrate poten-

tial writes
F(Up)=Agdn0— Ky [8ud(7—1)%(7+1/2)
—BU AP (T—1)2(7+1)]. (10)

One remarks that expressioh0) contains yet explicitly the
function of time§, and its second derivative.

Seeking a¢* potential structure, it seems natural to ex-

press the differential relation i, as a function proportional
tou,, thatis
Agdpn 0+ 6Ky Adun(7—12)(7+1)#?°=—Au,. (11)

Replacing u, by its expression (3), and setting u
=6K,A%(r—1)?(7+1), Eq.(11) becomes

if |n—n0|<2§ and u,=0, (15
and presents a spatial width,
W, =/ &. (16)

The shape of such a solution is represented by Figat1
=0 for a discrete parametér 7/16). Solution(15) may be
compared to Eq(5) of [9] obtained by Tchofo Dinda and
Remoissenet in the continuous limit, and explains the re-
markable stability of their simulations from the continuous to
the discrete regime for important worths of the harmonicity
parameter, since both solutions have the same structure.
Note that, Eq.(2) is satisfied almost everywhere in the
lattice except at the entity feet or nodesandn, like those
represented in Fig. 1.
Indeed these two spatial singularities are at the origin of
nonlinear oscillations emergence, and therefore to the de-
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FIG. 2. Temporal breather dynamics over one period, in the FIG. 3. Temporal breather dynamics over one period, in the
ultimate degree of discretizatioré=#/2. Other parameterd, continuous limit: ¢é=7/16. Other parameter8,=1, K, =1, and
=1, K, =0.01, anda=10. (a) corresponds at timé=0 andt a=10. (a) corresponds at time=0 andt=T, (b) time t=T/8 and
=T, (b) timet=T/8 andt=7T/8, (c) time t=T/4 andt=3T/4, (d) t=7T/8, (c) time t=T/4 and t=3T/4, (d) time t=3T/8 andt
timet=3T/8 andt=5T/8, and(e) timet="T/2 with [T (arb. units]. =5T/8, and(e) time t=T/2, with [T (arb. unitg]. Crosses X)
Crosses X) represent the boundary conditiofeero displacement represent the boundary conditiofeero displacement and zero ve-
and zero velocity. locity).

struction of the breather structure, as it has been observatked, our numerical simulations with free boundary condi-
numerically by Tchofo Dinda and Remoissefi@f tions (with the same parameters as for fixed boundary con-
Moreover, it is clear that such a wave structure with spaditions, and not represented hgreeveal a total destruction
tial singularities is not physically correct, except if we fix of the initial breather structure before reaching one oscilla-
boundary conditions with zero displacement and velocitytion period at least, and show that the instabilities start to
like for classical stationary waves on a rope fixed at its exspread out at the feet of the breati{enden; and n, of
tremities. sketch Fig. ], that is at the singular points, by the emergence
of standing phonons which interact with the core of the
breather. Indeed, when we postulate or research a solution
under the form(15), the boundary conditions are implicit,
and suggest that the breather size be equal to the lattice size
In the previous section, we have shown that E).ad-  Or vice versa.
mits for solution expressiofil5). Here, we verify numeri- These remarks are confirmed when important coupling
cally the exact character of this solution for fixed boundaryworths leading to the continuum limit reduce strongly the
conditions, that is with zero displacement,&0) and zero  singularities, like the small breather amplitudes. Note that
velocity (U,=0) at the breather feet or singular points, like the big values of the harmonicity parameter which favor the

those located by, andn, in Fig. 1 or crosses in Figs. 2 and oscillatory term in comparison with the coupling term, tend
3. The lattice size is equal to 200 sites also to stabilize the breather structure.

Figures 2 and 3 represent, respectively, the temporal evo-
lution of the compactlike breather profile over one period for
the discrete parameters, and coupling tergs,=/2, K,
=0.01, andé= /16, K, =1, with an harmonicity param- In summary, we have demonstrated the existence of an
eter «=10. Note that, under these conditions, the breathegxact discrete compact breather solution in a standard non-
profile is still conserved after a large number of oscillationlinear Klein-Gordon system, and that the stability of this one
periods @100) and is accurate to the ana|ytica| predictionsis related to the boundary conditions of the lattice. Indeed, to
located by dots in Figs. 2 and 3. A systematic investigation ofomplete the Tchofo Dinda and Remoissenet observations,
the breather behavionot presented hereeveals that the and confirm the exact character of solutid3), we achieved
stability of the entity is independent of the amplitudg, any simulations with fixed boundary conditipns that is with
discrete parametef, and harmonicity parametex. zero displacementu,=0) and zero velocity ,=0) at the

To obtain a stable breather with free boundary conditionsbreather feet.
important values of the harmonicity parameter100) are Others simulations not represented here allowed us to
necessary, like it has been already shown by Tchofo Dindaonfirm that the solution singularities are at the origin of the
and Remoissendt9]. Therefore, one can deduce that thebreather instabilities. These instabilities may be toned down
breather stability is related to the boundary conditions. Inwith a strong coupling{,,)) that is in the continuous limit,

IIl. NUMERICAL SIMULATIONS:
BREATHER DYNAMICS

IV. CONCLUSION
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or with small breather amplitudeAg) for which the singu- have been obtained are still far away from practical applica-
larities are also reduced. Furthermore, important worths ofions, and much work remains to be done, in particular for
the harmonicity parameter which favor the oscillatory termthe research of solutions without singularities effect, or par-
in comparison with the coupling term, tend also to stabilizeticular potentials which cancel this effect. This effort de-
the breather structure, as it has been shown numerically byerves to be carried out to make the compacton concept a
Tchofo Dinda and Remoissenet. Note that, the breathers ||fq’ea||ty in some areas in which Compactons could ensure
time without |nStab|I|t|eS(W|th free bOUndary ConditiOI)S.S practica| app”cations such as in Signa| processing and com-
wide enough to present a genuine physical interest. Finally, inunications.

emerges from this paper that exact discrete compact breather

solutions exist in nonlinear Klein-Gordon systems, and that

thg concept of compactification .of. sol?tary waves impl_ies ACKNOWLEDGMENTS
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